Задача 17.
Определите среднюю урожайность картофеля в регионе по данным о:
а) посевной площади и валовом сборе;
б) посевной площади и урожайности;
в) валовом сборе и урожайности.
Объясните, как определена форма средней величины.
Область |
Посевная площадь, тыс.га |
Валовой сбор, тыс. т |
Урожайность, ц/га |
А |
139,80 |
2055 |
147 |
Б |
102,34 |
1484 |
145 |
В |
63,29 |
981 |
155 |
а) при определении средней урожайности картофеля в регионе по данным о посевной площади и валовом сборе используем формулу средней арифметической
w (x*f) – валовый сбор;
fi – площадь.
Х ср =(20550+14840+9810 )/ (139,80+102,34+63,29)= 148
б) по данным по посевной площади и урожайности используем формулу средней арифметической взвешенной:
xi –урожайность по области;
fi – посевная площадь по области.
Х ср =(139,80*147+102,34*145+63,29*155)/(139,80+102,34+63,29)= 148
в) по данным о валовом сборе и урожайности используем среднюю гармоническую взвешенную:
хi – урожайность;
w – валовый сбор.
Х ср =(20550+14840+9810 )/(20550/147+14840/145+9810/155) = 148
Задача 27.
В целях изучения затрат времени на изготовление одной детали рабочими завода проведена 10%-ная случайная бесповторная выборка, в результате которой получено следующее распределение деталей по затратам времени:
Затраты времени на одну деталь, мин. |
Число деталей, шт. |
До 20 |
10 |
От 20 до 24 |
20 |
От 24 до 28 |
50 |
От 28 до 32 |
15 |
Свыше 32 |
5 |
Итого |
100 |
1. На основании этих данных вычислите: средние затраты времени на изготовление одной детали, дисперсию, среднее квадратическое отклонение и коэффициент вариации.
2.С вероятностью 0,954 определить:
а) предельную ошибку выборочной средней и возможные границы, в которых ожидаются средние затраты времени на изготовление одной детали на заводе;
б) необходимую численность выборочной совокупности, чтобы предельная ошибка выборки при определении средних затрат времени не превышала 1 минуты.
Решение: